
Dgraph: Synchronously Replicated, Transactional and Distributed Graph
Database

Manish Jain

manish@dgraph.io

Dgraph Labs, Inc.

Version: 0.8 Last Updated: February 23, 2020

Abstract

Dgraph is a distributed graph database which provides hori-
zontal scalability, distributed cluster-wide ACID transactions,
low-latency arbitrary-depth joins, synchronous replication,
high availability and crash resilience. Aimed at real-time trans-
actional workloads, Dgraph shards and stores data in a way
to optimize joins and traversals, while still providing data
retrieval and aggregation. Dgraph’s unique take is to provide
low-latency arbitrary-depth joins in a constant number of net-
work calls (typically, just one network call) that would be
required to execute a single join, irrespective of the size of
the cluster or the size of the result set.

1 Introduction

Distributed systems or databases tend to suffer from join depth
problem. That is, as the number of traversals of relationships
increase within a query, the number of network calls required
(in a sufficiently sharded dataset) increase. This is typically
due to entity-based data sharding, where entities are randomly
(sometimes with a heuristic) distributed across servers con-
taining all the relationships and attributes along with them.
This approach suffers from high-fanout result set in interme-
diate steps of a graph query causing them to do a broadcast
across the cluster to perform joins on the entities. Thus, a sin-
gle graph query results in network broadcasts, hence causing
a jump in the query latency as the cluster grows.

Dgraph is a distributed database with a native graph back-
end. It is the only native graph database to be horizontally
scalable and support full ACID-compliant cluster-wide dis-
tributed transactions. In fact, Dgraph is the first graph database
to have been Jepsen [5] tested for transactional consistency.

Dgraph automatically shards data into machines, as the
amount of data or the number of servers change, and auto-
matically reshards data to move it across servers to balance
the load. It also supports synchronous replication backed by
Raft [16] protocol, which allows the queries to seamlessly
failover to provide high availability.

Dgraph solves the join depth problem with a unique shard-
ing mechanism. Instead of sharding by entities, as most sys-
tems do, Dgraph shards by relationships. Dgraph’s unique
way of sharding data is inspired by research at Google [1],
which shows that the overall latency of a query is greater than
the latency of the slowest component. The more servers a
query touches to execute, the slower the query latency would
be. By doing relationship based sharding, Dgraph can execute
a join or traversal in a single network call (with a backup
network call to replica if the first is slow), irrespective of the
size of the cluster or the input set of entities. Dgraph executes
arbitrary-depth joins without network broadcasts or collecting
data in a central place. This allows the queries to be fast and
latencies to be low and predictable.

2 Dgraph Architecture

Dgraph consists of Zeros and Alphas, each representing a
group that they are serving. Zeros serve group zero and Alphas
serve group one, group two and onwards. Each group forms
a Raft cluster of 1, 3 or 5 members configurable by a human
operator (henceforth, referred to as the operator). All updates
made to the group are serialized via Raft consensus algorithm
and applied in that order to the leader and followers.

Zeros store and propagate metadata about the cluster while
Alphas store user data. In particular, Zeros are responsible for
membership information, which keeps track of the group each
Alpha server is serving, its internal IP address for communi-
cation within the cluster, the shards it is serving, etc. Zeros do
not keep track of the health of the Alphas and take actions on
them – that is considered the job of the operator. Using this
information, Zero can tell the new Alpha to either join and
serve an existing group, or form a new group.

The membership information is streamed out from Zero to
all the Alphas. Alphas can use this membership information
to route queries (or mutations) which hit the cluster. Every
instance in the cluster forms a connection with every other
instance (thus forming 2× (N

2) open connections, where N
= number of Dgraph instances in the cluster), however, the

1

Figure 1: Dgraph Architecture: There is one Zero group and
multiple Alpha groups. Each group is a Raft group consisting
of one or more members.

usage of this connection depends on their relationship. For
example, a Raft leader-follower relationship would have heart-
beats (every 100 ms) and data flowing, while an Alpha would
only talk to Alpha in another group when it needs to do so
for processing queries or mutations. Every open connection
does have light-weight health checks to avoid stalling on a tar-
get server which has become unresponsive (died, partitioned,
etc.). Both Alphas and Zeros expose one port for intra-cluster
communication over Grpc [8] and one for external commu-
nication with clients over HTTP. Alphas additionally expose
an external Grpc port for communication with Grpc based
clients – all official clients run over Grpc.

Zero also runs an oracle which hands out monotonically-
increasing logical timestamps for transactions in the cluster
(no relation to system time). A Zero leader would typically
lease out a bandwidth of timestamps upfront via Raft proposal
and then service timestamp requests strictly from memory
without any further coordination. Zero oracle tracks additional
things for aiding with transaction commits, which would be
elaborated in section 5.

Zero gets information about the size of data in each group
from the Alpha leaders, which it uses to make decisions about
shard movement, which would be elaborated in section 2.4.

2.1 Data Format

Dgraph can input data in a JSON format or (slightly modified)
RDF NQuad format. Dgraph would break down a JSON map
into smaller chunks, with each JSON key-value forming one
record equivalent of a single RDF triple record. When parsing
RDF Triple or JSON, data is directly converted into an internal

protocol buffer [9] data format and not interchanged among
the two.

{
"uid" : "0xab",
"type" : "Astronaut",
"name" : "Mark Watney",
"birth" : "2005/01/02",
"follower": { "uid": "0xbc", ... },

}

<0xab> <type> "Astronaut" .
<0xab> <name> "Mark Watney" .
<0xab> <birth> "2005/01/02" .
<0xab> <follower> <0xbc> .

A triple is typically expressed as a subject-predicate-object
or a subject-predicate-value. Subject is a node, predicate is a
relationship, and object can be another node or a primitive data
type. One points from a node to another node, the other points
from a node to a value. In the above example, the triple with
name is a type of subject-predicate-value (typically referred
to as an attribute), while the triple with follower is a type of
subject-predicate-object. Dgraph makes no difference in how
it handles these two types of records (to avoid confusion over
these two types, we’ll refer to them as object-values). Dgraph
considers this as the unit of record and a typical JSON map
would be broken into multiple such records.

Data can be retrieved from Dgraph using GraphQL [7]
and a modified version of GraphQL, called GraphQL+- [6].
GraphQL+- has most of the same properties as GraphQL. But,
adds various properties which are important for a database,
like query variables, functions and blocks. More information
about how the query language came to be and the differences
between GraphQL and GraphQL+- can be found in this blog
post [4].

As mentioned in section 2, all internal and external com-
munication in Dgraph runs via Grpc and Protocol Buffers.
Dgraph also exposes HTTP endpoints to allow building client
libraries in languages which are not supported by these two.
There is a functionality parity between HTTP endpoints and
APIs exposed via Grpc.

In accordance with the GraphQL spec, query responses
from Dgraph are in JSON format, both over HTTP and Grpc.

2.2 Data Storage
Dgraph data is stored in an embeddable key-value database
called Badger [3] for data input-output on disk. Badger is
an LSM-tree based design, but differs from others in how it
can optionally store values separately from keys to generate
a much smaller LSM tree, which results in both lower write
and read amplification. Various benchmarks run by the team

2

show Badger to provide equivalent or faster writes than other
LSM based DBs, while providing equivalent read latencies
compared to B+-tree based DBs (which tend to provide much
faster reads than LSM trees).

As mentioned above, all records with the same predicate
form one shard. Within a shard, records sharing the same
subject-predicate are grouped and condensed into one single
key-value pair in Badger. This value is referred to as a posting
list, a terminology commonly used in search engines to refer
to a sorted list of doc ids containing a search term. A posting
list is stored as a value in Badger, with the key being derived
from subject and predicate.

<0x01> <follower> <0xab> .
<0x01> <follower> <0xbc> .
<0x01> <follower> <0xcd> .
...
key = <follower, 0x01>
value = <0xab, 0xbc, 0xcd, ...>

All subjects in Dgraph are assigned a globally unique id,
called a uid . A uid is stored as a 64-bit unsigned integer
(uint64) to allow efficient, native treatment by Go language
in the code base. Zero is responsible for handing out uids as
needed by the Alphas and does it in the same monotonically
increasing fashion as timestamps (section 2). A uid once
allocated is never reallocated or reassigned. Thus, every node
in the graph can be referenced by a unique integer.

Object-values are stored in postings. Each posting has an
integer id. When the posting holds an object, the id is the
uid assigned to that object. When posting holds a value, the
integer id for value is determined based upon the schema
of the predicate. If the predicate allows multiple values, the
integer id for the value would be a fingerprint of the value. If
the predicate stores values with language, the integer id would
be a fingerprint of the language tag. Otherwise, the integer id
would be set to maximum possible uint64 (264 - 1). Both uid
and integer id is never set to zero.

Value could be one of the many supported data types: int,
float, string, datetime, geo, etc. The data is converted into bi-
nary format and stored in a posting along with the information
about the original type. A posting can also hold facets. Facets
are key-value labels on an edge, treated like attachments.

In a common case where the predicate only has objects
(and no values like follower edge), a posting list would consist
largely of sorted uids . These are optimized by doing integer
compression. The uids are grouped in blocks of 256 integers
(configurable), where each block has a base uid and a binary
blob. The blob is generated by taking a difference of current
uid with the last and storing the difference in bytes encoded
using group varint. This generates a data compression ratio
of 10. When doing intersections, we can use these blocks to
do binary searches or block jumps to avoid decoding all the
blocks. Sorted integer encoding is a hotly researched topic
and there is a lot of room for optimization here in terms

Figure 2: Posting list structure stored in group varint-encoded
blocks

of performance. Work is going on currently to use Roaring
Bitmaps [10] instead to represent this data.

Thanks to these techniques, a single edge traversal corre-
sponds to only a single Badger lookup. For example, finding
a list of all of X’s followers would involve doing a lookup
on <follower, X> key which would give a posting list con-
taining all of their followers’ uids . Further lookups can be
made to get a list of posts made by followers . Common fol-
lowers between X and Y an be found by doing two lookups
followed by intersecting the sorted int lists of <follower,
X> and <follower, Y>. Note that distributed joins and (ob-
ject based) traversals only require uids to be transmitted over
network, which is also very efficient. All this allows Dgraph
to be very efficient on these operations, without compromis-
ing on the typical select * from table where X=Y style
record lookups.

This type of data storage has benefits in joins and traversals,
but comes with an additional problem of high fan-out. If there
are too many records with the same <subject, predicate>,
the overall posting list could grow to an untenable size. This
is typically only a problem for objects (not so much for val-
ues). We solve this by binary splitting a posting list as soon
as its on-disk size hits a certain threshold. A split posting list
would be stored as multiple keys in Badger, with optimiza-
tions made to avoid retrieving the splits until the operation
needs them. Despite storage differences, the posting list con-
tinues to provide the same sorted iteration via APIs as an
unsplit list.

3

2.3 Data Sharding

While Dgraph shares a lot of features of NoSQL and dis-
tributed SQL databases, it is quite different in how it handles
its records. In other databases, a row or document would be
the smallest unit of storage (guaranteed to be located together),
while sharding could be as simple as generating equal sized
chunks consisting of many of these records.

Dgraph’s smallest unit of record is a triple (subject-
predicate-object, described below), with each predicate in
its entirety forming a shard. In other words, Dgraph logically
groups all the triples with the same predicate and considers
them one shard. Each shard is then assigned a group (1..N)
which can then be served by all the Alphas serving that group,
as explained in section 2.

This data sharding model allows Dgraph to execute a com-
plete join in a single network call and without any data fetch-
ing across servers by the caller. This combined with grouping
of records in a unique way on disk to convert operations which
would typically be executed by expensive disk iterations, into
fewer, cheaper disk seeks makes Dgraph internal working
quite efficient.

To elaborate this further, consider a dataset which contains
information about where people live (predicate: "lives-in")
and what they eat (predicate: "eats"). Data might look some-
thing like this:

<person-a> <lives-in> <sf> .
<person-a> <eats> <sushi> .
<person-a> <eats> <indian> .
...
<person-b> <lives-in> <nyc> .
<person-b> <eats> <thai> .

In this case, we’ll have two shards: lives-in and eats. As-
suming the worst case scenario where the cluster is so big that
each shard lives on a separate server. For a query which asks
for [people who live in SF and eat Sushi], Dgraph
would execute one network call to server containing lives-
in and do a single lookup for all the people who live in
SF (* <lives-in> <sf>). In the second step, it would take
those results and send them over to server containing eats,
do a single lookup to get all the people who eat Sushi (*
<eats> <sushi>), and intersect with the previous step’s re-
sultset to generate the final list of people from SF who eat
Sushi. In a similar fashion, this result set can then be further
filtered/joined, each join executing in one network call.

As we learnt in section 2.2, the result set is a list of sorted
64-bit unsigned integers, which make the retrieval and inter-
section operations very efficient.

Figure 3: Data sharding

2.4 Data Rebalancing

As explained above, each shard contains a whole predicate
in its entirety which means Dgraph shards can be of uneven
size. The shards not only contain the original data, but also
all of their indices. Dgraph groups contain many shards, so
the groups can also be of uneven size. The group and shard
sizes are periodically communicated to Zero. Zero uses this
information to try to achieve a balance among groups, using
heuristics. Current one being used is just data size, with the
idea that equal sized groups would allow similar resource
usage across servers serving those groups. Other heuristics,
particularly around query traffic, could be added later.

To achieve balance, Zero would move shards from one
group to another. It does so by marking the shard read-only,
then asking the source group to iterate over the underlying key-
values concurrently and streaming them over to the leader of
the destination group. The destination group leader proposes
these key-values via Raft, gaining all the correctness that
comes with it. Once all the proposals have been successfully
applied by the destination group, Zero would mark the shard
as being served by the destination group. Zero would then
tell source group to delete the shard from its storage, thus
finalizing the process.

While this process sounds pretty straighforward, there are
many race and edge conditions here which can cause transac-
tional correctness to be violated as shown by Jepsen tests [5].
We’ll showcase some of these violations here:

1. A violation can occur when a slightly behind Alpha

4

server would think that it is still serving the shard (despite
the shard having moved to another group) and allow muta-
tions to be run on itself. To avoid this, all transactions states
keep the shard and the group info for the writes (along with
their conflict keys as we’ll see in section 5). The shard-group
information is then checked by Zero to ensure that what the
transaction observes (via Alpha it talked to) and what Zero
has is the same – a mismatch would cause a transaction abort.

2. Another violation happens when a transaction commits
after the shard was put into read-only mode – this would cause
that commit to be ignored during the shard transfer. Zero
catches this by assigning a timestamp to the move operation.
Any commits (on this shard) at a higher timestamp would be
aborted, until the shard move has completed and the shard is
brought back to the read-write mode.

3. Yet another violation can occur when the destination
group receives a read below the move timestamp, or a source
group receives a read after it has deleted the shard. In both
cases, no data exists which can cause the reads to incorrectly
return back nil values. Dgraph avoids this by informing the
destination group of the move timestamp, which it can use
to reject any reads for that shard below it. Similarly, Zero
includes a membership mark at which the source Alpha must
reach before the group can delete the shard, thus, every Alpha
member of the group would know that it is no longer servig
the data before deleting it.

Overall, the mechanism of membership information syn-
chronization during a shard move proved the hardest to get
right with respect to transactional correctness.

3 Indexing

Dgraph is designed to be a primary database for applications.
As such, it supports most of the commonly needed indices. In
particular, for strings, it supports regular expressions, full-text
search, term matching, exact and hash matching index. For
datetime, it supports year, month, day and hour level indices.
For geo, it supports nearby, within, etc. operations, and so
on...

All these indices are stored by Dgraph using the same post-
ing list format described above. The difference between an
index and data is the key. A data key is typically <predicate,
uid>, while an index key is <predicate, token>. A token
is derived from the value of the data, using an index tokenizer.

Each index tokenizer supports this interface:

type Tokenizer interface {
Name() string

// Type returns the string representation of
// the typeID that we care about.
Type() string

// Tokens return tokens for a given value. The

// tokens shouldn’t be encoded with the byte
// identifier.
Tokens(interface{}) ([]string, error)

// Identifier returns the prefix byte for this
// token type. This should be unique. The range
// 0x80 to 0xff (inclusive) is reserved for
// user-provided custom tokenizers.
Identifier() byte

// IsSortable returns true if the tokenizer can
// be used for sorting/ordering.
IsSortable() bool

// IsLossy() returns true if we don’t store the
// values directly as index keys during
// tokenization. If a predicate is tokenized
// using a lossy tokenizer, we need to fetch
// the actual value and compare.
IsLossy() bool

}

Every tokenizer has a globally unique identifier
(Identifier() byte), including custom tokenizers pro-
vided by operators. The tokens generated are prefixed with a
tokenizer identifier to be able to traverse through all tokens
belonging to only that tokenizer. This is useful when doing
iteration for inequality queries (greater than, less than, etc.).
Note that inequality queries can only be done if a tokenizer is
sortable (IsSortable() bool). For example, in strings, an
exact index is sortable, but a hash index is not.

Depending upon which index a predicate has set in the
schema, every mutation in that predicate would invoke one
or more of these tokenizers to generate the tokens. Note that
indices only operate on values, not objects. A set of tokens
would be generated with the before mutation value and an-
other set with the after mutation value. Mutations would be
added to delete the subject uid from the posting lists of before
tokens and to add the subject uid to the after tokens.

Note that all indices have object values, so they largely deal
only in uids. Indices in particular can suffer from high fan-out
problem and are solved using posting list splits described in
the section 2.2.

4 Multiple Version Concurrency Control

As described in section 2.2, data is stored in posting list for-
mat, which consists of postings sorted by integer ids. All
posting list writes are stored as deltas to Badger on commit,
using the commit timestamp. Note that timestamps are mono-
tonically increasing globally across the DB, so any future
commits are guaranteed to have a higher timestamp.

It is not possible to update this list in-place, for multiple
reasons. One is that Badger (and most LSM trees) writes are

5

immutable, which plays very well with filesystems and rsync.
Second is that adding an entry within a sorted list requires
moving following entries, which depending upon the position
of the entry can be expensive. Third, as the posting list grows,
we want to avoid rewriting a large value every time a mutation
happens (for indices, it can happen quite frequently).

Dgraph considers a posting list as a state. Every future
write is then stored as a delta with a higher timestamp. A delta
would typically consist of postings with an operation (set or
delete). To generate a posting list, Badger would iterate the
versions in descending order, starting from the read timestamp,
picking all deltas until it finds the latest state. To run a posting
list iteration, the right postings for a transaction would be
picked, sorted by integer ids, and then merge-sort operation is
run between these delta postings and the underlying posting
list state.

Earlier iterations of this mechanism were aimed at keep-
ing the delta layer sorted by integer ids as well, overlaying it
on top of the state to avoid doing sorting during the reads —
any addition or deletion made would be consolidated based
on what was already in the delta layer and the state. These
iterations proved too complex to maintain for the team and
suffered from hard to find bugs. Ultimately, that concept was
dropped in favor of a simple understandable solution of pick-
ing the right postings for a read and sorting them before itera-
tion. Additionally, earlier APIs implemented both forward and
backward iteration adding complexity. Over time, it became
clear that only forward iteration was required, simplifying the
design.

There are many benefits in avoiding having to regenerate
the posting list state on every write. At the same time, as
deltas accumulate, the work of list regeneration gets delegated
to the readers, which can slow down the reads. To find a
balance and avoid gaining deltas indefinitely, we added a
rollup mechanism.

Rollups: As keys get read, Dgraph would selectively re-
generate the posting lists which have a minimum number of
deltas, or haven’t been regenerated for a while. The regener-
ation is done by starting from the latest state, then iterating
over the deltas in order and merging them with the state. The
final state is then written back at the latest delta timestamp, re-
placing the delta and forming a new state. All previous deltas
and states for that key can then be discarded to reclaim space.

This system allows Dgraph to provide MVCC. Each read
is operating upon an immutable version of the DB. Newer
deltas are being generated at higher timestamps and would be
skipped during a read at a lower timestamp.

5 Transactions

Dgraph has a design goal of being simple to operate. As
such, one of the goals is to not depend upon any third party
system. This proved quite hard to achieve while providing
high availability for not only data but also transactions.

Figure 4: MVCC

While designing transactions in Dgraph, we looked at pa-
pers from Spanner [13], HBase [11], Percolator [17] and oth-
ers. Spanner most famously uses atomic clocks to assign
timestamps to transactions. This comes at the cost of lower
write throughput on commodity servers which don’t have
GPS based clock sync mechanism. So, we rejected that idea
in favor of having a single Zero server, which can hand out
logical timestamps at a much faster pace.

To avoid Zero becoming a single point of failure, we run
multiple Zero instances forming a Raft group. But, this comes
with a unique challenge of how to do handover in case of
leader relection. Omid, Reloaded [11] (referenced as Omid2)
paper handles this problem by utilizing external system. In
Omid2, they run a standby timestamp server to take over in
case the leader fails. This standby server doesn’t need to get
the latest transaction state information, because Omid2 uses
Zookeeper [2], a centralized service for maintaining transac-
tion logs. Similarly, TiDB built TiKV, which uses a Raft-based
replication model for the key-values. This allows every write
by TiDB to automatically be considered highly-available.
Similarly, Bigtable [12], uses Google Filesystem [15] for dis-
tributed storage. Thus, no direct information transfer needs to
happen among the multiple servers forming the quorum.

While this concept achieves simplicity in the database, we
were not entirely thrilled with this idea due to two reasons.
One, we had an explicit goal of non-reliance on any third-
party system to make running Dgraph operationally easier,
and felt that a solution should be possible without pushing

6

synchronous replication within Badger (storage). Second, we
wanted to avoid touching disk unless necessary. By having
Raft be part of the Dgraph process, we can find-tune when
things get written to state to achieve better efficiency. In fact,
our implementation of transactions don’t write to DB state on
disk until they are committed (still written to Raft WAL).

We closely looked at HBase papers ([14], [11]) for other
ideas, but they didn’t directly fit our needs. For example,
HBase pushed a lot of transaction information back to the
client, giving them critical information about what they should
or should not read to maintain the transactional guarantees.
This however, makes the client libraries harder to build and
maintain, something we did not like. On top of that, a graph
query can touch millions of keys in the intermediate steps, it’s
expensive to keep track of all that information and propagate
that to the client.

Aim for Dgraph client libraries was to keep as minimal
state as possible to allow open-source users unfamiliar with
the internals of Dgraph to build and maintain libraries in
languages unfamiliar to us (for example, Elixir).

// TODO: Do I describe the first iteration?
We simply could not find a paper at the time which de-

scribed how to build a simple to understand, highly-available
transactional system which could be run without assuming
that the storage layer is highly available. So, we had to come
up with a new solution. Our second iteration still faced many
issues as proven by Jepsen tests. So, we simplified our second
iteration to a third one, which is as follows.

5.1 Lock-Free High Availability Transaction
Processing

Dgraph follows a lock-free transaction model. Each transac-
tion pursues its course concurrently, never blocking on other
transactions, while reading the committed data at or below its
start timestamp. As mentioned before, Zero leader maintains
an Oracle which hands out logical transaction timestamps
to Alphas. Oracle also keeps track of a commit map, storing
a conflict key→ latest commit timestamp. As shown in al-
gorithm 1, every transaction provides the Oracle the list of
conflict keys, along with the start timestamp of the transac-
tion. Conflict keys are derived from the modified keys, but
are not the same. For each write, a conflict key is calculated
depending upon the schema. When a transaction requests a
commit, Zero would check if any of those keys has a commit
timestamp higher than the start timestamp of the transaction.
If the condition is met, the transaction is aborted. Otherwise,
a new timestamp is leased by the Oracle, set as the commit
timestamp and conflict keys in the map are updated.

The Zero leader then proposes this status update (commit
or abort) in the form of a start→ commit ts (where commit
ts = 0 for abort) to the followers and achieves quorum. Once
quorum is achieved, Zero leader streams out this update to
the subscribers, which are Alpha leaders. To keep the design

Algorithm 1 Commit (Ts,Keys)
1: for each key k ∈ Keys do
2: if lastCommit(k) > Ts then
3: Propose(Ts← abort)
4: return
5: end if
6: end for
7: Tc← GetTimestamps(1)
8: for each key k ∈ Keys do
9: lastCommit(k)← Tc

10: end for
11: Propose(Ts← Tc)

Algorithm 2 Watermark: Calculate DoneUntil (T , isPending)
1: if T /∈MinHeap then
2: MinHeap← T
3: end if
4: pending(T)← isPending
5: curDoneT s← DoneUntil
6: for each minT s ∈MinHeap.Peek() do
7: if pending(minT s) then
8: break
9: end if

10: MinHeap.Pop()
11: curDoneT s← minT s
12: end for
13: DoneUntil← curDoneT s

simple, Zero does not push to any Alpha leader. It is the job
of (whoever is) the latest Alpha leader to establish an open
stream from Zero to receive transaction status updates.

Along with the transaction status update, Zero leader also
sends out a MaxAssigned timestamp. MaxAssigned is cal-
culated using a Watermark algorithm 2, which maintains a
min-heap of all allocated timestamps, both start and com-
mit timestamps. As consensus is achieved, the timestamps
are marked as done and MaxAssigned gets advanced to the
maximum timestamp up until which everything has achieved
consensus as needed. Note that start timestamps don’t typi-
cally need a consensus (unless lease needs to be updated) and
get marked as done immediately. Commit timestamps always
need a consensus to ensure that Zero group achieves quorum
on the status of the transaction. This allows a Zero follower
to become a leader and have full knowledge of transaction
statuses. This ordering is crucial to achieve the transactional
guarantees as we will see below.

Once Alpha leaders receive this update, they would propose
it to their followers, applying the updates in the same order.
All Raft proposal applications in Alphas are done serially.
Alphas also have an Oracle, which keeps track of the pending
transactions. They maintain the start timestamp, along with a
transaction cache which keeps all the updated posting lists in

7

Figure 5: MaxAssigned watermark. Open circles represent
and filled circles represent done. Start timestamps 1, 2, and 4
are immediately marked as done. Commit timestamp 3 begins
and must have consensus before it is done. Watermark keeps
track of the highest timestamp at and below which everything
is done.

Figure 6: The MaxAssigned system ensures that linearizable
reads. Reads at timestamps higher than the current MaxAs-
signed (MA) must block to ensure the writes up until the read
timestamp are applied. Txn 2 receives start ts 3, and a read at
ts 3 must acknowledge any writes up to ts 2.

memory. On a transaction abort, the cache is simply dropped.
On a transaction commit, the posting lists are written to Bad-
ger using the commit timestamp. Finally, the MaxAssigned
timestamp is updated.

Every read or write operation must have a start times-
tamp. When a new query or mutation hits an Alpha, it would
ask Zero to assign a timestamp. This operation is typically
batched to only allow one pending assignment call to Zero
leader per Alpha. If the start timestamp of a newly received
query is higher than the MaxAssigned registered by that Al-
pha, it would block the query until its MaxAssigned reaches
or exceeds the start ts. This solution nicely tackles a wide-
array of edge case scenarios, including Alpha falling back or
going behind a network partition from its peers or just restart-
ing after a crash, etc. In all those cases, the queries would
be blocked until the Alpha has seen all updates up until the
timestamp of the query, thus maintaining the guarantee of

transactions and linearizable reads.
For correctness, only Zero leader is allowed to assign times-

tamps, uids, etc. There are edge cases where Zero followers
would mistakenly think they’re the leaders and serve stale
data — Dgraph does multiple things to avoid these scenarios.

1. If a Zero leadership changes, the new leader would lease
out a range of timestamps higher than the previous leader has
seen. However, an older commit proposal stuck with the older
leader can get forwarded to the new one. This can allow a
commit to happen at an older timestamp, causing failure of
transactional guarantees. We avoid this by disallowing Zero
followers forwarding requests to the leader and rejecting those
proposals.

// TODO: We should have a membership section, which
explains how membership works and is transmitted to Alphas.

2. Every membership state update streamed from Zero re-
quires a read-quorum (check with Zero peers to find the latest
Raft index update seen by the group). If the Zero is behind
a partition, for example, it wouldn’t be able to achieve this
quorum and send out a membership update. Alphas expect an
update periodically and if they don’t hear from the Zero leader
after a few cycles, they’d consider the Zero leader defunct,
abolish connection and retry to establish connection with a
(potentially different) healthy leader.

6 Consistency Model

Dgraph supports MVCC, Read Snapshots and Distributed
ACID transactions. The transactions are cluster-wide across
universal dataset – not limited by any key level or server
level restrictions. Transactions are also lockless. They don’t
block/wait on seeing pending writes by uncommitted trans-
actions. They can all proceed concurrently and Zero would
choose to commit or abort them depending on conflicts.

Considering the expense of tracking all the data read by a
single graph query (could be millions of keys), Dgraph does
not provide Serializable Snapshot Isolation. Instead, Dgraph
provides Snapshot Isolation, tracking writes which is a much
more contained set than reads.

Dgraph hands out monotonically increasing timestamps
(represented by T) for transactions (represented by T x).
Ergo, if any transaction T xi commits before T x j starts, then
T T xi

commit < T
T x j

start . Any commit at Tcommit is guaranteed to be
seen by a read at timestamp Tread by any client, if Tread >
Tcommit . Thus, Dgraph reads are linearizable. Also, all reads
are snapshots across the entire cluster, seeing all previously
committed transactions in full.

As mentioned, Dgraph reads are linearizable. While this is
great for correctness, it can cause performance issues when a
lot of reads and writes are going on simultaneously. All reads
are supposed to block until the Alpha has seen all the writes
up until the read timestamp. In many cases, operators would
opt for performance over achieving linearizablity. Dgraph

8

provides two options for speeding up reads:
1. A typical read-write transaction would allocate a new

timestamp to the client. This would update MaxAssigned
which would then flow via Zero leader to Alpha leaders and
then get proposed. Until that happens, a read can’t proceed.
Read-only transactions would still require a read timestamp
from Zero, but Zero would opportunistically hand out the
same read timestamp to multiple callers, allowing Alpha to
amortize the cost of reaching MaxAssigned across multiple
queries.

2. Best-effort transactions are a variant of read-only trans-
actions, which would use an Alpha’s observed MaxAssigned
timestamp as the read timestamp. Thus, the receiver Alpha
does not have to block at all and can continue to process the
query. This is the equivalent of eventual consistency model
typical in other databases. Ultimately, every Dgraph read is a
snapshot over the entire distributed database and none of the
reads would violate the snapshot guarantee. 1

7 Replication

Most updates to Dgraph are done via Raft. Let’s start with
Alphas which can push a lot of data through the system. All
mutations and transaction updates are proposed via Raft and
are made part of the Raft write-ahead logs. On a crash and
restart, the Raft logs are replayed from the last snapshot to
bring the state machine back up to the correct latest state. On
the flip side, the longer the logs, the longer it takes for Alpha
to replay them on a restart, causing a start delay. So, the logs
must be trimmed by taking a snapshot which indicates that
the state up until that point has been persisted and does not
need to be replayed on a restart.

As mentioned above, Alphas write mutations to the Raft
WAL, but keep them in memory in a transaction cache. When
a transaction is committed, the mutations are written to the
state at the commit timestamp. This means that on a restart,
all the pending transactions must be brought back to memory
via the Raft WAL. This requires a calculation to pick the
right Raft index to trim the logs at, which would keep all the
pending transactions in their entirety in the logs.

One of the lessons we learnt while fixing Jepsen issues
was that, to improve debuggability of a complex distributed
system, the system should run like clock work. In other words,
once an event in one system has happened, events in other
systems should almost be predictable. This guiding principle
determined how we take snapshots.

Raft paper allows leaders and followers to take snapshots
independently of each other. Dgraph used to do that but that
brought unpredictability to the system and made debugging

1Note however that a typical Dgraph query could hit multiple Alphas in
various groups — some of these Alphas might not have reached the read
timestamp (initial Alpha’s MaxAssigned timestamp) yet. In those cases, the
query could still block until those Alphas catch up.

much harder. So, keeping with the hard learnt lesson of pre-
dictability principle, we changed it to make the leader calcu-
late the snapshot index and propose this result. This allowed
leader and followers to all take snapshot at the same index,
exactly the same time (if they’re generally caught up). Further
more, this group level snapshot event is then communicated
to Zero to allow it to trim the conflict map by removing all
entries below the snapshot timestamp. Following this chain
of events in logs has improved debuggability of the system
dramatically.

Dgraph only keeps metadata in Raft snapshots, the actual
data is stored separately. Dgraph does not make a copy of
that data during snapshot. When a follower falls behind and
needs a snapshot, it asks the leader for it and leader would
stream the snapshot from its state (Badger, just like Dgraph,
supports MVCC and when doing a read at a certain times-
tamp, is operating upon a logical snapshot of the DB). In the
previous versions, follower would wipe out its current state
before accepting the updates from the leader. In the newer
versions, leader can choose to send only the delta state up-
date to the follower, which can decrease the data transmitted
considerably.

8 High Availability and Scalability

Dgraph’s architecture revolves around Raft groups for update
log serialization and replication. In the CAP throrem, this
follows CP, i.e. in a network partition, Dgraph would choose
consistency over availability. However, the concepts of CAP
theorem should not be confused with high availability, which
is determined by how many instances can be lost without the
service getting affected.

In a three-node group, Dgraph can loose one instance per
group without causing any measurable impact on the function-
ality of the database. However, loosing two instances from
the same group would cause Dgraph to block, considering all
updates go through Raft. In a five-node group, the number of
instances that can be lost without affecting functionality is
two. We do not recommend running more than five replicas
per group.

Given the central managerial role of Dgraph Zero, one
might assume that Zero would be the single point of failure.
However, that’s not the case. In the scenario where Zero
follower dies, nothing changes really. If the Zero leader dies,
one of the Zero followers would become the leader, renew its
timestamp and uid assignment lease, pick up the transaction
status logs (stored via Raft) and start accepting requests from
Alphas. The only thing that could be lost during this transition
are transactions which were trying to commit with the lost
Zero. They might error out, but could be retried. Same goes
for Alphas. All Alpha followers have the same information
as the Alpha leader and any of the members of the group can
be lost without losing any state.

Dgraph can support as many groups as can be represented

9

by 32-bit integer (even that is an artificial limit). Each group
can have one, three, five (potentially more, but not recom-
mended) replicas. The number of uids (graph nodes) that can
be present in the system are limited by 64-bit unsigned integer,
same goes for transaction timestamps. All of these are very
generous limits and not a cause of concern for scalability.

9 Queries

A typical Dgraph query can hit many Alphas, depending upon
where the predicates lie. Each query is sub-divided into tasks,
each task responsible for one predicate.

9.1 Traversals
Dgraph query tasks (henceforth referred to as tasks) are gen-
erally built around the mechanism of converting uid list to
matrix during traversal. The query can have a list of uids to
traverse, the execution engine would do lookups in Badger
concurrently to get the posting lists for each Uid (note that
predicate is always part of the task), converting each uid to
a list. Thus, a task query would return a list of Uid lists, aka
UidMatrix. If the predicate holds a value (example, predicate
name), the UidList returns a list of values, aka ValueMatrix.
A predicate could allow only one uid/value, or allow mul-
tiple uids/value. This mechanism works correctly in either
of those scenarios. If the posting list only has one uid/value,
the resulting list would only have one element. A matrix in
this case would have a list of lists, each list with zero or one
element. Note that there’s parity between the index of the Uid
in list and the index of the list in UidMatrix. So, Dgraph can
accurately maintain the relationships.

A ValueMatrix is typically the leaf in the task tree. Once
we have values, we just need to encode them in the results.
However, a task with UidMatrix result would typically have
sub-tasks. Those sub-tasks would need a query UidList for
processing. Dgraph would merge-sort the UidMatrix into a
single, sorted list of Uids, which would be copied over to the
sub-tasks. Each sub-task could similarly run expand on the
same or other predicates.

9.2 Functions
Dgraph also supports functions. These functions provide an
easy way to query Dgraph when the global uid space needs
to be restricted to a small set (or even a single uid). Functions
also provide advanced functionality like regular expressions,
full-text search, equality and inequality over sortable data
types, geo-spatial searches, etc. These functions are also en-
coded into a task query, except this time they don’t start with a
UidList. The task query instead contains tokens, derived from
the tokenizers corresponding to the index these functions are
using (as explained above). Most functions require some sort
of index to operate, for example, regular expression queries

use trigram indexing, geo-spatial queries uses S2-cell based
geo indexing and so on... As described in section above, in-
dexing keys encode predicate and token, instead of a predicate
and uid. So, the mechanism to fill up the matrix is the same as
in any other task query. Only this time, we use list of tokens
instead of a list of Uids as the query set.

9.3 Filters
The technique described above works for traversals. But, fil-
ters (intersections) are a big part of user queries. Each task
contains a UidList as a query and a matrix as a result. Task
also stores a resulting uid list, which can store a uid set from
the resulting UidMatrix. Depending upon whether filters are
applied or not, this uid set can be the same as merge-sorted
UidMatrix or a subset of it.

Filters are a tree in their own right. Dgraph supports AND,
OR and NOT filters, which can be further combined to create
a complex filter tree. Filters typically consist of functions
which can ask for more information and are represented as
tasks. These tasks execute in the same mechanism described
above, but do one additional thing. The tasks also contain the
source list of Uids (the resulting set from the parent task to
which the filter is being applied to). This list of uids is sent as
part of the filter task. The task uses these uids to perform any
intersections at the destination server, returning only a subset
of the results, instead of retrieving all results for the task. This
can significantly cut down the result payload size while also
allowing optimizations during filter task execution to speed
things up. Once the results are returned, the co-ordinator
server would stitch up the results using the AND, OR or NOT
operators.

9.4 Intersections
The uid intersection itself uses three modes of integer inter-
section, choosing between linear scan, block jump or binary
search depending upon the ratio of the size of the results and
the size of the source UidList to provide the best performance.
When the two lists are of the same size, Dgraph uses linear
scan over both the lists. When one list is much longer than
other, Dgraph would iterate over the shorter list and do bi-
nary lookups over the longer. For some range in between,
Dgraph would iterate over the shorter and do forward seeking
block jumps over the longer list. Dgraph’s block based integer
encoding mechanism makes all this quite efficient.

TODO: Talk about ACID.

10 Future Work

We had removed data caching from Dgraph due to heavy read-
write contention, and built a new, contention-free Go cache
library to aid our reads. Work is underway in integrating that
with Dgraph. Dgraph does not have any query or response

10

caching — such a cache would be difficult to maintain in
an MVCC environment where each read can have different
results, based on its timestamp.

Sorted integer encoding and intersection is a hotly re-
searched topic and there is a lot of room for optimization
here in terms of performance. As mentioned earlier, work is
underway in experimenting a switch to Roaring Bitmaps.

We also plan to work on a query optimizer, which can
better determine the right sequence in which to execute query.
So far, the simple nature of GraphQL has let the operators
manually optimize their queries — but surely Dgraph can do
a better job knowing the state of data.

Future work here is to allow writes during the shard move,
which depending upon the size of the shard can take some
time.

TODO: Add a conclusion.

11 Acknowledgments

Dgraph wouldn’t have been possible without the tireless con-
tributions of its core dev team and extended community. This
work also wouldn’t have been possible without funding from
our investors. A full list of contributors is present here:

github.com/dgraph-io/dgraph/graphs/contributors

Dgraph is an open source software, available on

https://github.com/dgraph-io/dgraph

More information about Dgraph is available on

https://dgraph.io

References
[1] Achieving rapid response times in large online services

https://static.googleusercontent.com/media/research.
google.com/en//pubs/archive/44875.pdf.

[2] Apache zookeeper. https://zookeeper.apache.org.

[3] Badger: Fast key-value db in go.

[4] Building a native graphql database: Challenges, learn-
ings and future https://blog.dgraph.io/post/
building-native-graphql-database-dgraph/.

[5] Dgraph’s jepsen analysis https://jepsen.io/analyses/
dgraph-1-0-2.

[6] Graphql+-: Dgraph query language https://docs.dgraph.io/
query-language.

[7] Graphql spec: https://graphql.github.io/graphql-spec/
June2018/.

[8] grpc: A high performance, open-source universal rpc framework https:
//grpc.io/.

[9] Protocol buffers: A language-neutral, platform-neutral extensible mech-
anism for serializing structured data. https://developers.google.
com/protocol-buffers.

[10] Roaring bitmaps: A better compressed bitset https://roaringbitmap.org/.
[11] BORTNIKOV, E., HILLEL, E., KEIDAR, I., KELLY, I., MOREL, M.,

PARANJPYE, S., PEREZ-SORROSAL, F., AND SHACHAM, O. Omid,
reloaded: Scalable and highly-available transaction processing. In
15th USENIX Conference on File and Storage Technologies (FAST 17)
(Santa Clara, CA, 2017), pp. 167–180.

[12] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH,
D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND GRUBER,
R. E. Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst. 26, 2 (June 2008), 4:1–4:26.

[13] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER, C.,
HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,
LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN,
S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR,
C., WANG, R., AND WOODFORD, D. Spanner: Google’s globally-
distributed database. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (2012), OSDI’12,
pp. 251–264.

[14] FERRO, D. G., JUNQUEIRA, F., KELLY, I., REED, B., AND YABAN-
DEH, M. Omid: Lock-free transactional support for distributed data
stores. In Data Engineering (ICDE), 2014 IEEE 30th International
Conference on (2014), pp. 676–687.

[15] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file sys-
tem. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (2003), SOSP ’03, pp. 29–43.

[16] ONGARO, D., AND OUSTERHOUT, J. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14) (Philadelphia, PA, 2014), pp. 305–319.

[17] PENG, D., AND DABEK, F. Large-scale incremental processing using
distributed transactions and notifications. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Implementation
(2010).

11

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44875.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44875.pdf
https://zookeeper.apache.org
https://blog.dgraph.io/post/building-native-graphql-database-dgraph/
https://blog.dgraph.io/post/building-native-graphql-database-dgraph/
https://jepsen.io/analyses/dgraph-1-0-2
https://jepsen.io/analyses/dgraph-1-0-2
https://docs.dgraph.io/query-language
https://docs.dgraph.io/query-language
https://graphql.github.io/graphql-spec/June2018/
https://graphql.github.io/graphql-spec/June2018/
https://grpc.io/
https://grpc.io/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

	Introduction
	Dgraph Architecture
	Data Format
	Data Storage
	Data Sharding
	Data Rebalancing

	Indexing
	Multiple Version Concurrency Control
	Transactions
	Lock-Free High Availability Transaction Processing

	Consistency Model
	Replication
	High Availability and Scalability
	Queries
	Traversals
	Functions
	Filters
	Intersections

	Future Work
	Acknowledgments

